干货 高中必修1-5数学必考知识点汇总来了!高中三年都用得到!

文章出处:升博体育平台入口官网 发表时间: 2023-10-16 08:22:59

  上了高中,很多同学都开始意识到数学的重要性,高中数学知识量大、综合性强以及能力要求高。然而,知识点是零散的,不利于记忆和掌握。

  于是,小编给大家理了数学必修1-必修5知识点汇总,帮大家在学习的时候快速梳理,高一、高二、高三都可以用哦!

  (2)常用数集及其记法N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.

  ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.

  ①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.

  ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

  ⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.

  ⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.

  ⑨对于含字母参数的函数,求其定义域,根据问题详细情况需对字母参数进行分类讨论.

  ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.

  求函数最值的常用方法和求函数值域的方法绝大多数都是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

  ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.

  ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.

  ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.

  解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.

  ②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.

  ③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.

  ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.

  要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.

  对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.

  函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.

  ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于

  轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象

  ②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)

  ③单调性:如果a0,则幂函数的图象过原点,并且在[0, +∞)上为增函数.如果a0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴.

  ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.

  ③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.

  一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

  一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

  公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

  公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  ④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线、空间中的垂直问题

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.

  ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.

  ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.

  在“作角”时依定义关键作射影,由射影定义知重点是斜线上一点到面的垂线,

  在解题时,注意挖掘题设中两个主要信息:(1)斜线)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线)二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

  (2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.

  ③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

  ②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

  ②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

  (2)棱锥:几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点

  几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.

  几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

  (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)柱体、锥体、台体的体积公式

  过两点的直线的斜率公式:注意下面四点:A.当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

  (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

  (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

  (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

  (一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

  一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

  输入、输出框 表示一个算法输入和输出的信息,可用在算法中任何的需要输入、输出的位置。

  处理框 赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

  判断框 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时明“否”或“N”。

  4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

  1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法不能离开的一种基本算法结构。

  顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。

  条件结构是指在算法中通过对条件的判断根据条件是否成立而选不一样流向的算法结构。条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

  3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:

  (1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

  (2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

  注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。

  注意:①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。②赋值号左右不能对换。

  如“A=B”“B=A”的含义运行结果是不同的。③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。

  循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构。即WHILE语句和UNTIL语句。

  当计算机遇到WHILE语句时,先判断条件的真假,若条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,若条件仍符合,再次执行循环体,这样的一个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。因此,当型循环有时也称为“前测试型”循环。

  直到型循环又称为“后测试型”循环,从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,接着进行条件的判断,若条件不满足,继续返回执行循环体,然后再进行条件的判断,这样的一个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。

  (1):用较大的数m除以较小的数n得到一个商 和一个余数 ;(2):若 =0,则n为m,n的最大公约数;若 ≠0,则用除数n除以余数 得到一个商 和一个余数 ;(3):若 =0,则 为m,n的最大公约数;若 ≠0,则用除数 除以余数 得到一个商 和一个余数 ;…… 依次计算直至 =0,此时所得到的 即为所求的最大公约数。

  我国早期也有求最大公约数问题的算法,就是更相减损术。在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。

  翻译为:(1):任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

  (1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

  (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。

  基本思想:插入排序的思想就是读一个,排一个。将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数作比较,确定它在从大到小的排列中应处的位置.将该位置和以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)

  基本思想:依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数...... 由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序.

  1、概念:进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。对于任何一个数,我们大家可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。

  2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  把总体的单位做排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

  1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

  2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

  (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

  (1)按比例分层抽样:依据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

  3.用样本估计总体时,如果抽样的方法是合理的,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

  虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

  4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变

  (2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍

  (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

  (2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

  (3)利用回归方程进行统计控制规定Y值的变化,经过控制x的范围来实现统计控制的目标。如已得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不可能会发生的事件,叫相对于条件S的不可能事件;

  (4)随机事件:在条件S下有几率发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A出没出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)= 为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

  (3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

  4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

  (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等。

  2.人教版高中数学向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0, 即“共同起点,指向被减”

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上伸长为原来的∣λ∣倍;

  当∣λ∣1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上缩短为原来的∣λ∣倍。

  。四川升学大数据尊重版权,版权归相关权利人所有。本文只为传递信息,如存在文章/图片/音视频等资源不正确使用的情况,请随时保持联系管理员处理。

  平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。

标签: